
A Chomsky-Schützenberger representation for
weighted multiple context-free languages

Tobias Denkinger
Faculty of Computer Science

Technische Universität Dresden
01062 Dresden, Germany

tobias.denkinger@tu-dresden.de

Abstract

We prove a Chomsky-Schützenberger rep-
resentation theorem for weighted multiple
context-free languages.

1 Introduction

Mildly context-sensitive languages receive much
attention in the natural language processing com-
munity (Kallmeyer, 2010). Many classes of mildly
context-sensitive languages are subsumed by the
multiple context-free languages, e.g. the languages
of head grammars, linear context-free rewriting
systems (Seki et al., 1991), combinatory catego-
rial grammars (Vijay-Shanker et al., 1986; Weir
and Joshi, 1988), linear indexed grammars (Vijay-
Shanker, 1987), minimalist grammars, (Michaelis,
2001a; Michaelis, 2001b), and finite-copying lexi-
cal functional grammars (Seki et al., 1993).

The Chomsky-Schützenberger (CS) represen-
tation for context-free languages (Chomsky and
Schützenberger, 1963, Prop. 2) has recently been
generalised to quantitative context-free languages
(Droste and Vogler, 2013) and to (unweighted)
multiple context-free languages (Yoshinaka et al.,
2010). In order to obtain a CS representation for
multiple context-free languages, Yoshinaka et al.
(2010) introduce multiple Dyck languages.

We give a more algebraic definition of multi-
ple Dyck languages using congruence relations to-
gether with a decision algorithm for membership
that is strongly related to these congruence relations
(Sec. 3). We then provide a CS representation for
weighted multiple context-free languages (Sec. 4).

2 Preliminaries

In this section we briefly recall formalisms used in
this paper and fix some notation.

We denote by N the set of natural numbers (in-
cluding zero). For every n ∈ N we abbreviate
{1, . . . , n} by [n]. Let A be a set. The power set

of A is denoted by P(A). Let B be a finite set. A
partitioning of B is a set P ⊆ P(B) where the el-
ements of P are non-empty, pairwise disjoint, and⋃

p∈P p = B.
Let S be a countable set (of sorts) and s ∈ S.

An S-sorted set is a tuple (B, sort) where B is a
set and sort is a function from B to S. We denote
the preimage of s under sort by Bs and abbreviate
(B, sort) by B; sort will always be clear from the
context. An S-ranked set is an (S∗×S)-sorted set.

Let A and B be sets. The set of functions from A
to B is denoted by BA. Let f and g be functions.
The domain and range of f are denoted by dom(f)
and rng(f), respectively. We denote the function
obtained by applying g after f by g ◦ f . Let F be
a set of functions and B ⊆

⋂
f∈F dom(f). The

set {f(B) | f ∈ F} ⊆ P(rng(f)) is denoted by
F (B). Let G and H be sets of functions. The set
{h ◦ g | h ∈ H, g ∈ G} of functions is denoted by
H ◦G.

We use the notion of nondeterministic finite au-
tomata with extended transition function (short:
FSA) from Hopcroft and Ullman (1979, Sec. 2.3).

2.1 Weight algebras

A monoid is an algebra (A, ·, 1) where · is associa-
tive and 1 is neutral with respect to ·. A bimonoid
is an algebra (A,+, ·, 0, 1) where (A,+, 0) and
(A, ·, 1) are monoids. We call a bimonoid strong
if (A,+, 0) is commutative and for every a ∈ A
we have 0 · a = 0 = a · 0. Intuitively, a strong
bimonoid is a semiring without distributivity. A
strong bimonoid is called commutative if (A, ·, 1)
is commutative. A commutative strong bimonoid
is complete if there is an infinitary sum operation∑

that maps every indexed family of elements of
A to A, extends +, and satisfies infinitary asso-
ciativity and commutativity laws; cf. Droste and
Vogler (2013, Sec. 2). For the rest of this paper
let (A,+, ·, 0, 1), abbreviated by A, be a complete
commutative strong bimonoid.

mailto:tobias.denkinger@tu-dresden.de

Example 1. We provide a list of complete com-
mutative strong bimonoids (cf. Droste et al. (2010,
Ex. 1)) some of which are relevant for natural lan-
guage processing:
• Any complete commutative semiring, e.g. the

Boolean semiring B =
(
{0, 1},∨,∧, 0, 1

)
, the

probability semiring Pr =
(
R≥0,+, ·, 0, 1

)
, the

Viterbi semiring
(
[0, 1],max, ·, 0, 1

)
, the tropi-

cal semiring
(
R ∪ {∞},min,+,∞, 0

)
,

• any complete lattice,

• the tropical bimonoid(
R≥0 ∪ {∞},+,min, 0,∞

)
, and

• the algebra ([0, 1],⊕, ·, 0, 1) with ⊕ being de-
fined for every a, b ∈ [0, 1] as either a ⊕ b =
a+ b− a · b or a⊕ b = min{a+ b, 1},

where R and R≥0 denote the set of reals and the set
of non-negative reals, respectively, and +, ·, max,
min, ∧, ∨ denote the usual operations. 2

An A-weighted language (over ∆) is a func-
tion L : ∆∗ → A. The support of L, denoted
by supp(L), is {w ∈ ∆∗ | L(w) 6= 0}. If
|supp(L)| ≤ 1, we callL a monome. We write µ.w
for L if L(w) = µ and for every w′ ∈ ∆∗ \ {w}
we have L(w′) = 0.

2.2 Weighted string homomorphisms

Let ∆ and Γ be alphabets and g : ∆→ AΓ ∗ such
that g(δ) is a monome for every δ ∈ ∆. We
define ĝ : ∆∗ → AΓ ∗ where for every k ∈ N,
w1, . . . , wk ∈ ∆, and u ∈ Γ ∗ we have

ĝ(w1 · · ·wk)(u) =
∑

u1,...,uk∈Γ ∗
u=u1···uk

k∏
i=1

g
(
wi
)(
ui
)
.

We call ĝ an A-weighted (string) homomorphism.
An A-weighted homomorphism h : ∆∗ → AΓ ∗ is
alphabetic if there is a function h′ : ∆→ AΓ∪{ε}
with h = ĥ′.

Now assume thatA = B and for every δ ∈ ∆we
have |supp(g(δ))| = 1. Then g can be construed
as a function from ∆ to Γ ∗ and ĝ can be construed
as a function from ∆∗ to Γ ∗. In this case we call
ĝ a (string) homomorphism. If moreover, g is a
function from ∆ to Γ ∪ {ε}, we call ĝ alphabetic.

The sets of all A-weighted homomorphisms,
A-weighted alphabetic homomorphisms, homo-
morphisms, and alphabetic homomorphisms are
denoted by HOM(A), αHOM(A), HOM, and
αHOM, respectively.

2.3 Weighted multiple context-free languages
We fix a set X = {xji | i, j ∈ N} of variables.
Variables serve as placeholders for strings. The
set of string functions over ∆ is the N-ranked
set F∆ where for every `, s1, . . . , s`, s ∈ N we
have that (F∆)(s1···s`,s) is the set of functions
f : (∆∗)s1×· · ·×(∆∗)s` → (∆∗)s that are defined
by some equation of the form f

(
x1, . . . , x`

)
=(

u1, . . . , us
)

where xi = (x1i , . . . , x
si
i) for every

i ∈ [`], Xf = {xji | i ∈ [`], j ∈ [si]}, and
u1, . . . , us ∈ (∆ ∪Xf)∗.

In this situation, we define the rank of f , de-
noted by rank(f), and the fan-out of f , denoted by
fan-out(f), as ` and s, respectively. The string
function f is called linear if in u1 · · ·us every
element of Xf occurs at most once, f is called
non-deleting if in u1 · · ·us every element of Xf

occurs at least once, and f is called terminal-free
if u1, . . . , us ∈ X∗f . If f is non-deleting, it is
uniquely determined by the string [u1, . . . , us]. We
may therefore write [u1, . . . , us] for f .

Note that for every s′ ∈ N∗×N, the set of linear
terminal-free string functions of sort s′ is finite.

Definition 2. A multiple context-free gram-
mar (MCFG) is a tuple (N,∆, I, P) where
N is a finite N-sorted set (non-terminals),
I ⊆ N1 (initial non-terminals), and P ⊆fin{

(A, f,A1 · · ·A`) ∈ N × F∆ × N ` | sort(f) =
(sort(A1) · · · sort(A`), sort(A)), f is linear, ` ∈
N
}

(productions). We construe P as an N-ranked
set where for every ρ = (A, f,A1 · · ·A`) ∈ P we
have sort(ρ) = sort(f). 2

Let G = (N,∆, I, P) be an MCFG and
w ∈ ∆∗. A production (A, f,A1 · · ·A`) ∈
P is usually written as A → f(A1, . . . , A`);
it inherits rank and fan-out from f . Also,
rank(G) = maxρ∈P rank(ρ) and fan-out(G) =
maxρ∈P fan-out(ρ). MCFGs of fan-out at most k
are called k-MCFGs. The productions of G form a
context-free grammar G′ with the elements of F∆
and ‘(’, ‘)’, and ‘,’ as terminal symbols, N as the
set of non-terminals, and I as the set of initial non-
terminals. A word in the language of G′ is a term
over F∆ and can be evaluated to a word in ∆∗. The
set of derivations of w in G, denoted by DG(w),
is the set of abstract syntax trees in G′ whose cor-
responding words are evaluated to w. The lan-
guage of G is L(G) = {w ∈ ∆∗ | DG(w) 6= ∅}.
A language L is multiple context-free if there is
an MCFG G with L = L(G). The set of multi-
ple context-free languages (for which a k-MCFG

exists) is denoted by MCFL (k-MCFL, respec-
tively).

Let k ∈ N. The class k-MCFL is a substitution-
closed full abstract family of languages (Seki et
al., 1991, Thm. 3.9). In particular, k-MCFL is
closed under intersection with regular languages
and under homomorphisms.

Definition 3. An A-weighted MCFG is a tuple
(N,∆, I, P, µ) where (N,∆, I, P) is an MCFG
and µ : P → A (weight function). 2

Let G = (N,∆, I, P, µ) be an A-weighted
MCFG and w ∈ ∆∗. The set of derivations of w
in G is the set of derivations of w in (N,∆, I, P).
G inherits fan-out from (N,∆, I, P);A-weighted
MCFGs of fan-out at most k are calledA-weighted
k-MCFGs. We apply µ to derivations by applying
it at every position (of the derivation) and then mul-
tiplying the resulting values (in any order, since ·
is commutative).

The A-weighted language induced by G is the
function JGK : ∆∗ → A where for every w ∈ ∆∗
we have JGK(w) =

∑
d∈DG(w) µ(d). Two (A-

weighted) MCFGs are equivalent if they induce
the same (A-weighted) language. An A-weighted
language L is multiple context-free and of fan-out
k if there is an A-weighted k-MCFG G such that
L = JGK; k-MCFL(A) denotes the set of multiple
context-free A-weighted languages of fan-out k.

Example 4. Consider the Pr-weighted MCFG
G =

(
{S,A,B}, ∆, {S}, {ρ1, . . . , ρ5}, µ

)
where

∆ = {a, b, c, d}, sort(S) = 1, sort(A) =
sort(B) = 2, and

ρ1 : S → [x11x
1
2x

2
1x

2
2](A,B) µ(ρ1) = 1

ρ2 : A→ [ax11, cx
2
1](A) µ(ρ2) = 1/2

ρ3 : B → [bx11, dx
2
1](B) µ(ρ3) = 1/3

ρ4 : A→ [ε, ε]() µ(ρ4) = 1/2

ρ5 : B → [ε, ε]() µ(ρ5) = 2/3 .

We observe that supp(JGK) = {ambncmdn |
m,n ∈ N} and for every m,n ∈ N we have
JGK(ambncmdn) = µ(ρ1) ·

(
µ(ρ2)

)m · µ(ρ4) ·(
µ(ρ3)

)m·µ(ρ5) = 1/(2m·3n+1). The only deriva-
tion of a2bc2d in G is shown in Fig. 1. 2

Non-deleting normal form An (A-weighted)
MCFG is called non-deleting if the string func-
tion in every production is linear and non-deleting.
Seki et al. (1991, Lem. 2.2) proved that for ev-
ery k-MCFG there is an equivalent non-deleting k-
MCFG. We generalise this to A-weighted MCFGs.

S → [x11x
1
2x

2
1x

2
2](A,B)

A→ [ax11, cx
2
1](A)

A→ [ax11, cx
2
1](A)

A→ [ε, ε]()

B → [bx11, dx
2
1](B)

B → [ε, ε]()

Figure 1: Only derivation of a2bc2d in G (Ex. 4).

Lemma 5. For everyA-weighted k-MCFG there is
an equivalent non-deleting A-weighted k-MCFG.

Proof. Let G = (N,∆, I, P, µ). When exam-
ining the proof of Seki et al. (1991, Lem. 2.2),
we notice that only step 2 of Procedure 1 deals
with non-deletion. We construct N ′ and P ′ from
(N,∆, I, P) by step 2 of Procedure 1, but drop the
restriction that Ψ 6= [sort(A)].1 Let g : P ′ → P
assign to every ρ′ ∈ P ′ the production in G
it has been constructed from. Furthermore, let
I ′ = {A[∅] | A ∈ I} and µ′ = µ◦g. Since the con-
struction preserves the structure of derivations, we
have for every w ∈ ∆∗ that g gives rise to a bijec-
tion ĝ betweenDG′(w) andDG(w) with µ′ = µ◦ĝ.
Hence JGK = J(N ′, ∆, I ′, P ′, µ′)K. The fan-out is
not increased by this construction. �

3 Multiple Dyck languages

According to Kanazawa (2014, Sec. 1) there is
no definition of multiple Dyck languages using
congruence relations. We close this gap by giving
such a definition (Def. 7).

3.1 The definition
We recall the definition of multiple Dyck languages
(Yoshinaka et al., 2010, Def. 1): Let ∆ be a finite
N-sorted set,2 (·) be a bijection between ∆ and
some alphabet∆, k = maxδ∈∆ sort(δ), and r ≥ k.
The multiple Dyck grammar with respect to ∆ is
the k-MCFG G∆ =

(
{A1, . . . , Ak}, ∆̂, {A1}, P

)
where ∆̂ = {δ[i], δ̄[i] | δ ∈ ∆, i ∈ [sort(δ)]},
sort(Ai) = i for every i ∈ [k], and P is the small-
est set such that
(i) for every linear non-deleting3 terminal-free

string function f ∈ (F∆)(s1···s`,s) with ` ∈
1This construction may therefore create productions of

fan-out 0.
2In Yoshinaka et al. (2010), N-sorted sets are called in-

dexed sets and sort is denoted as dim.
3We add the restriction “non-deleting” in comparison to

the original definition since in Yoshinaka et al. (2010, Proof
of Lem. 1) only non-deleting rules are used.

[r], s1, . . . , s`, s ∈ [k] we have As →
f(As1 , . . . , As`) ∈ P ,

(ii) for every δ ∈ ∆ with sort s we have As →
[δ[1]x11δ̄

[1], . . . , δ[s]xs1δ̄
[s]](As) ∈ P , and

(iii) for every s ∈ [k] we have As →
[u1, . . . , us](As) ∈ P where ui ∈{
xi, xiδ

[1]δ̄[1], δ[1]δ̄[1]xi | δ ∈ ∆1

}
for every

i ∈ [s].
The multiple Dyck language with respect to
∆, denoted by mD(∆), is L(G∆). We call
maxδ∈∆ sort(δ) the dimension of mD(∆). The
set of multiple Dyck languages of dimension at
most k is denoted by k-mDYCK.

For the rest of this section let Σ be an alphabet.
Also let Σ be a set (disjoint from Σ) and (·) be a
bijection between Σ and Σ. Intuitively Σ and Σ
are sets of opening and closing parentheses and (·)
matches an opening to its closing parenthesis.

We define ≡Σ as the smallest congruence rela-
tion on the free monoid (Σ ∪ Σ)∗ where for ev-
ery σ ∈ Σ the cancellation rule σσ ≡Σ ε holds.
The Dyck language with respect to Σ, denoted by
D(Σ), is [ε]≡Σ . The set of Dyck languages is de-
noted by DYCK.

Example 6. Let Σ = {(, 〈, [, J}. We abbreviate (̄,
〈̄, [̄, and J̄ by), 〉,], and K, respectively. Then we
have for example J()K〈〉() ≡Σ JK〈〉 ≡Σ JK ≡Σ ε
and (J)K〈〉() ≡Σ (J)K() ≡Σ (J)K 6≡Σ ε. 2

Let P be a partitioning of Σ. We define ≡Σ,P
as the smallest congruence relation on the free
monoid (Σ ∪ Σ)∗ such that if v1 · · · v` ≡Σ,P ε
with v1, . . . , v` ∈ D(Σ), then the cancellation rule

u0σ1v1σ1u1 · · ·σ`v`σ`u` ≡Σ,P u0 · · ·u`
holds for every {σ1, . . . , σ`} ∈ P and u0, . . . ,
u` ∈ D(Σ). Intuitively, every element of P de-
notes a set of linked opening parentheses, i.e. paren-
theses that must be consumed simultaneously by
≡Σ,P.

Definition 7. The congruence multiple Dyck lan-
guage with respect to Σ and P, denoted by
mDc(Σ,P), is [ε]≡Σ,P . 2

Example 8. Let Σ = {(, 〈, [, J} and P = {p1, p2}
where p1 = {(, 〈} and p2 = {[, J}. We abbreviate
(̄, 〈̄, [̄, and J̄ by), 〉,], and K, respectively. Then
we have for example J()K[〈〉] ≡Σ,P ε since p2 =
{[, J} ∈ P, ()〈〉 ≡Σ,P ε, and u0 = u1 = u2 = ε.
But J()K〈[]〉 6≡Σ,P ε since when instantiating the
cancellation rule with any of the two elements of
P, we can not reduce J()K〈[]〉:

(i) If we choose {σ1, σ2} = {J, [} then we would
need to set u1 = 〈 and u2 =〉, but they are not
in D(Σ), also () 6≡Σ,P ε;

(ii) If we choose {σ1, σ2} = {(, 〈} then we would
need to set u0 = J and u1 =K, but they are not
in D(Σ), also [] 6≡Σ,P ε.

Hence J()K[〈〉], ()〈〉 ∈ mDc(Σ,P) and J()K〈[]〉 6∈
mDc(Σ,P). 2

Observation 9. From the definition of ≡Σ,P
it is easy to see that for every u1, . . . , uk ∈
D(Σ) and v1, . . . , v` ∈ D(Σ) we have that
u1 · · ·uk, v1 · · · v` ∈ mDc(Σ,P) implies that
every permutation of u1, . . . , uk, v1, . . . , v` is in
mDc(Σ,P). �

The dimension of mDc(Σ,P) is maxp∈P|p|.
The set of congruence multiple Dyck languages
(of at most dimension k) is denoted by mDYCKc
(k-mDYCKc, respectively).

Note that the dimension of P is 1 if and only
if P = {{σ} | σ ∈ Σ}. In this situation we
have ≡Σ = ≡Σ,P and therefore also D(Σ) =
mDc(Σ,P). Hence DYCK = 1-mDYCKc.

Proposition 10. k-mDYCK ⊆ k-mDYCKc

Idea of the proof. We show the property (∗) that
implies our claim. The “⇒” we prove by induction
on the structure of derivations in G∆. For “⇐” we
construct derivations in G∆ by induction on the
number of applications of the cancellation rule.

Proof. Let mD ∈ k-mDYCK. Then there is an
N-sorted set ∆ such that mD = mD(∆) and
k ≥ maxδ∈∆ sort(δ). We define pδ = {δ[i] | i ∈
[sort(δ)]} for every δ ∈ ∆, Σ =

⋃
δ∈∆ pδ, and

P = {pδ | δ ∈ ∆}. Clearly maxp∈P|p| ≤ k. Thus
mDc(Σ,P) ∈ k-mDYCK. Let Tup(G∆, A) de-
note the set of tuples generated inG∆ when starting
with non-terminal A where A is not necessarily ini-
tial. In the following we show that for every m ∈
[maxδ∈∆ sort(δ)] and w1, . . . , wm ∈ (Σ ∪ Σ̄)∗ :

(w1, . . . , wm) ∈ Tup(G∆, Am)

⇐⇒ w1 · · ·wm ∈ mDc(Σ,P) (∗)
∧ w1, . . . , wm ∈ D(Σ) .

We show the “⇒” by induction on the struc-
ture of derivations in G∆: From the definitions
of Tup and G∆ we have that (w1, . . . , wm) ∈
Tup(G∆, Am) implies that there are a rule Am →
f(Am1 , . . . , Am`) in G∆ and a tuple ~ui =
(u1i , . . . , u

mi
i) ∈ Tup(G∆, Ami) for every i ∈ [`]

such that f(~u1, . . . , ~u`) = (w1, . . . , wm). By ap-
plying the induction hypothesis ` times, we also
have that u11, . . . , u

m1
1 , . . . , u1` , . . . , u

m`
` ∈ D(Σ)

and u11 · · ·u
m1
1 , . . . , u1` · · ·u

m`
` ∈ mD(Σ,P). We

distinguish three cases (each corresponding to one
type of rule in G∆):

(i) f is linear, non-deleting, and terminal-free.
Then we have for every i ∈ [m] that wi ∈
{u11, . . . , u

m1
1 , . . . , u1` , . . . , u

m`
` }

∗ and there-
fore also wi ∈ D(Σ). Furthermore, by ap-
plying Obs. 9 (` − 1) times, we have that
w1 · · ·wm ∈ mDc(Σ,P).

(ii) f = [δ[1]x11δ̄
[1], . . . , δ[m]xm1 δ̄

[m]]; then ` = 1,
m1 = m, and for every i ∈ [m] we have
wi = δ[i]ui1δ̄

[i] and since ui1 ∈ D(Σ) also
wi ∈ D(Σ). Furthermore, w1 · · ·wm =
δ[1]u11δ̄

[1] · · · δ[m]um1 δ̄
[m] ∈ mDc(Σ,P) due

to the cancellation rule.

(iii) f = [u1, . . . , um] where for every i ∈
[m] : ui ∈

{
xi, xiδ

[1]δ̄[1], δ[1]δ̄[1]xi | δ ∈
∆1

}
; then ` = 1, m1 = m, and wi ∈{

u1i , x
1
i δ

[1]δ̄[1], δ[1]δ̄[1]x1i | δ ∈ ∆1

}
. Since

≡Σ is a congruence relation, we have that
w1, . . . , wm ∈ D(Σ). By applying Obs. 9 m
times, we have that w1 · · ·wm ∈ mDc(Σ,P).

We show the “⇐” by induction on the number of
applications of the cancellation rule (including the
number of applications to reduce the word v1 · · · v`
from the definition on the cancellation rule to ε): If
the cancellation rule is applied zero times in order
to reduce w1 · · ·wm to ε then w1 = . . . = wm =
ε. The rule Am → [ε, . . . , ε]() clearly derives
(w1, . . . , wm). If the cancellation rule is applied
i+ 1 times in order to reduce w1 · · ·wm to ε then
w1 · · ·wm has the form u0σ1v1σ1u1 · · ·σ`v`σ`u`
for some u0, . . . , u` ∈ D(Σ), v1, . . . , v` ∈ D(Σ),
and {σ1, . . . , σ`} ∈ P with v1 · · · v` ≡Σ,P ε.
Then we need to apply the cancellation rule at most
i times to reduce v1 · · · v` to ε, hence, by induction
hypothesis, there is some d ∈ DG∆ that derives
(v1, . . . , v`). We use an appropriate rule ρ of type
(ii) such that ρ(d) derives (σ1v1σ1, . . . , σ`v`σ`).
Also, we need to apply the cancellation rule at
most i times in order to reduce u0 · · ·u` to ε,
hence, by induction hypothesis, there are deriva-
tions d1, . . . , dn that derive tuples containing ex-
actly u0, . . . , u` as components. Then there is a
rule ρ′ such that ρ′(ρ(d), d1, . . . , dn) ∈ DG∆ de-
rives the tuple (w1, . . . , wm).

From (∗) with m = 1 and the fact “w1 ∈

mDc(Σ,P) implies w1 ∈ D(Σ)” we get that
mDc(Σ,P) = mD . �

Lemma 11. k-mDYCKc ⊆ k-MCFL

Proof idea. For any congruence multiple Dyck lan-
guage we construct a multiple Dyck grammar that
is equivalent up to a homomorphism. We then use
the closure of k-MCFL under homomorphisms.

Proof. Let L ∈ k-mDYCKc. Then there are an
alphabet Σ and a partitioning P of Σ such that
mDc(Σ,P) = L. Consider P as an N-sorted set
where the sort of an element is its cardinality. Then
∆̂ = {p[i], p̄[i] | p ∈ P, i ∈ [|p|]}. For every
p ∈ P assume some fixed enumeration of the ele-
ments of p. We define a bijection g : ∆̂→ Σ ∪Σ
such that every p[i] (for some p and i) is assigned
the i-th element of p and g(p̄[i]) = g(p[i]). Then
g(L(GP)) = L, where GP is the multiple Dyck
grammar with respect to P. Since k-MCFLs are
closed under homomorphisms (Seki et al., 1991,
Thm. 3.9), L ∈ k-MCFL.4 �

Observation 12. Examining the definition of mul-
tiple Dyck grammars, we observe that some pro-
duction in item (ii) has fan-out k for at least one
δ ∈ ∆. Then, using Seki et al. (1991, Thm. 3.4),
we have for every k ≥ 1 that (k + 1)-mDYCKc \
k-MCFL 6= ∅. �

Proposition 13.

1-mDYCKc (2-mDYCKc (. . .

Proof. We get ‘⊆’ from the definition of
k-mDYCKc and ‘6=’ from Obs. 12. �

3.2 Membership in a congruence multiple
Dyck language

We provide a recursive algorithm (Alg. 1) to decide
whether a word w is in a given congruence multi-
ple Dyck language mDc(Σ,P). This amounts to
checking whether w ≡Σ,P ε, and it suffices to only
apply the cancellation rule from left to right.

Outline of Alg. 1 We check that w is in D(Σ),
e.g. with the context-free grammar in (7.6) in Sa-
lomaa (1973). If w is not in D(Σ), it is also not in
mDc(Σ,P) and we return 0. Otherwise, we split
w into shortest strings u1, . . . , u` ∈ D(Σ) \ {ε}
such thatw = u1 · · ·u` (in line 5) with the function
SPLIT. Then every ui (for i ∈ [`]) necessarily starts

4This construction shows that Def. 7 is equivalent to Def. 1
in Yoshinaka et al. (2010) modulo the application of g.

Algorithm 1 Membership in mDc(Σ,P)

Input: Σ, P, and w ∈ (Σ ∪Σ)∗

Output: 1 if w ∈ mDc(Σ,P), 0 otherwise

1: function MAIN(Σ,P, w)
2: if w 6∈ D(Σ) then
3: return 0
4: end if
5: (u1, . . . , u`)← SPLIT(Σ,w)
6: Rel ← ∅
7: for i ∈ [`] do
8: let u′i s.t. ui = σu′iσ for some σ ∈ Σ
9: P ← {p ∈ dom(Rel) | p 3 σ}

10: if P 6= ∅ then
11: p← a minimal element of P
12: {I} ← {I ′ | (p, I ′) ∈ Rel}
13: Rel ← Rel \ {(p, I)}
14: Rel ← Rel ∪ {(p \ {σ}, I ∪ {i})}
15: else
16: {p} ← {p ∈ P | σ ∈ p}
17: Rel ← Rel ∪ {(p \ {σ}, {i})}
18: end if
19: end for
20: if

⋃
(∅,J)∈Rel J 6= [`] then

21: return 0
22: end if
23: for {j1, . . . , jk} ∈ {J | (∅, J) ∈ Rel} do
24: if MAIN(Σ,P, u′j1u

′
j2
· · ·u′jk) = 0 then

25: return 0
26: end if
27: end for
28: return 1
29: end function

30: function SPLIT(Σ,w)
31: (u1, . . . , u`)← sequence of shortest words

u1, . . . , u` ∈ D(Σ) \ {ε} with w = u1 · · ·u`
32: return (u1, . . . , u`)
33: end function

with some symbol σ ∈ Σ and ends with σ; we use
this property on line 8. Note that SPLIT is bijec-
tive (the inverse function is concatenation). We
therefore say that w and (u1, . . . , u`) correspond
to each other, and for every operation on either
of them there is a corresponding operation on the
other. In particular the empty string corresponds to
the empty tuple.

In lines 6–19 we find sets of indices {i1, . . . , ik}
such that the set of first symbols of ui1 , . . . , uik has
cardinality k and is an element of P. In order to
do this, we use a relation Rel ⊆ P(Σ) × P([`])

Table 1: Run of Alg. 1 on the word J()K[〈〉], cf.
Exs. 8 and 14.

line variable assignment

5: (u1, . . . , u`) =
(
J()K, [〈〉]

)
18: i = 1 Rel :

(
{[}, {1}

)
18: i = 2 Rel :

(
∅, {1, 2}

)
23: u′1 = (), u′2 = 〈〉

5: (u1, . . . , u`) =
(
(), 〈〉

)
18: i = 1 Rel :

(
{〈}, {1}

)
18: i = 2 Rel :

(
∅, {1, 2}

)
23: u′1 = ε, u′2 = ε

5: (u1, . . . , u`) =
()

that is initially empty (line 6). We modify Rel
while traversing the list u1, . . . , u` from left to right.
Intuitively every element (l, r) ∈ Rel stands for
an element p ∈ P where there is some previous
(with respect to the traversal of u1, . . . , u`) ui that
starts with some symbol σ ∈ p; l is the set of
elements of p we have not yet seen in some pre-
vious ui; and r is the set of indices i′ such that
some previous ui′ starts with an element of p. Rel
is constructed in lines 7–19. Since in every itera-
tion of the for-loop (lines 7–19) we add the cur-
rent i to the set on the right side of some tuple
in Rel , we have that

⋃
(p,J)∈Rel J = [`]. Now

since the left side of a tuple in Rel signifies the
elements of p we have not yet seen, a tuple of
the form (∅, {j1, . . . , jk}) ∈ Rel means that we
can reduce the outer parentheses of uj1 , . . . , ujk
with one step of the cancellation rule. In order to
reduce the whole string w, every element of [`]
has to appear in the right side of (exactly) one
tuple of the form (∅, J) ∈ Rel ; we check this
property in line 20 and return 0 (line 21) if it is
not satisfied. If it is satisfied, we remove the first
and last symbol from all uj1 , . . . , ujk (obtaining
u′j1 , . . . , u

′
jk

) where (∅, {j1, . . . , jk}) ∈ Rel and
call MAIN recursively with the string u′j1 · · ·u

′
jk

(lines 23–27); this corresponds to the condition that
v1 · · · vk ≡Σ,P ε in the definition of ≡Σ,P.

Example 14 (Ex. 8 continued). Tab. 1 shows a
run of Alg. 1 on the word J()K[〈〉] where we report
a subset of the variable assignment whenever we
reach the end of lines 5, 18, or 23. Different calls
to MAIN are separated by horizontal lines. 2

Proof of termination for Alg. 1. If w is not in
D(Σ), the algorithm terminates at line 3. If w
is the empty string, then ` = 0, therefore the in-
dex set of the for-loop on lines 7–19 is empty, the
condition on line 20 is false, the index set of the
for-loop on lines 23–27 is empty, there are no re-
cursive calls to MAIN, and the algorithm terminates
on line 28. If w is in D(Σ) and w 6= ε then there
remain two possible situations:
(i) There is some i ∈ [`] that does not occur in

the right side of any tuple in Rel . Then the
algorithm terminates on line 21.

(ii) Every i ∈ [`] occurs in the right side of some
tuple in Rel . Then the combined length of the
third arguments of all recursive calls in the for-
loop on lines 23–27 is strictly smaller then |w|
since the outermost parentheses are removed
from u1, . . . , u`. Since w has finitely many
symbols, this process can only be repeated
finitely often and the algorithm eventually ter-
minates. �

In light of the close link between Alg. 1 and the
relation ≡Σ,P we omit the proof of correctness.

4 CS theorem for weighted MCFLs

In this section we generalise the CS representation
of (unweighted) MCFLs (Yoshinaka et al., 2010,
Thm. 3) to the weighted case. We prove that an
A-weighted MCFL L can be decomposed into an
A-weighted alphabetic homomorphism h, a regu-
lar language R and a congruence multiple Dyck
language mDc such that L = h(R ∩mDc).

To show this, we use the proof idea from Droste
and Vogler (2013). The outline of our proof is as
follows:
(i) We separate the weights from L (Lem. 15), ob-

taining an MCFL L′ and a weighted alphabetic
homomorphism.

(ii) We use a corollary of the CS representation of
(unweighted) MCFLs (Cor. 16) to obtain a CS
representation of L′.

(iii) Using the two previous points and an ob-
servation for the composition of weighted
and unweighted alphabetic homomorphisms
(Lem. 18), we obtain a CS representation of L
(Thm. 19).

Lemma 15.

k-MCFL(A) = αHOM(A)
(
k-MCFL

)

Proof. (⊆) Let L ∈ k-MCFL(A). By Lem. 5
there is a non-deleting A-weighted k-MCFG G =
(N,∆, I, P, µ) such that JGK = L. We define a
non-deleting k-MCFG G′ = (N,∆′, I, P ′) where
∆′ = ∆∪{ρi | ρ ∈ P, i ∈ [fan-out(ρ)]} and P ′ is
the smallest set such that for every production ρ =
A → [u1, . . . , us](A1, . . . , Am) ∈ P there is a
productionA→ [ρ1u1, . . . , ρ

sus](A1, . . . , Am) ∈
P ′. We define an A-weighted alphabetic homo-
morphism h : (∆′)∗ → A∆∗ where h(δ) = 1.δ
for every δ ∈ ∆, h(ρ1) = µ(ρ).ε for every
ρ ∈ P , and h(ρi) = 1.ε for every ρ ∈ P and
i ∈ {2, . . . , fan-out(ρ)}. Since 1 is neutral in
multiplication, · is commutative, and G′ is non-
deleting, we have L = h(L(G′)).

(⊇) Let L ∈ k-MCFL and h : Γ ∗ → A∆∗

an A-weighted alphabetic homomorphism. By
Seki et al. (1991, Lem. 2.2) there is a non-
deleting k-MCFG G = (N,Γ, I, P) such that
L(G) = L. We construct theA-weighted k-MCFG
G′ = (N,∆, I, P ′, µ) as follows: We extend h to
h′ : (Γ ∪ X)∗ → A(∆∪X)∗ where h′(x) = 1.x
for every x ∈ X and h′(γ) = h(γ) for every
γ ∈ Γ . We define P ′ as the smallest set such that
for every ρ = A → [u1, . . . , us](A1, . . . , Am) ∈
P(s1···sm,s) and (u′1, . . . , u

′
s) ∈ supp(h′(u1)) ×

. . . × supp(h′(us)) we have that P ′ contains the
production ρ′ = A → [u′1, . . . , u

′
s](A1, . . . , Am)

and µ(ρ′) = h′(u1)(u
′
1) · . . . · h′(us)(u′s). Since ·

is commutative and G non-deleting, we have that
JG′K = h(JGK).5 �

By setting k = 1 in the above lemma we reobtain
the equivalence of 1 and 3 in Thm. 2 of Droste and
Vogler (2013) for complete commutative strong
bimonoids.

The following is a corollary to Yoshinaka et al.
(2010, Thm. 3) where the homomorphism is re-
placed by an alphabetic homomorphism and the
multiple Dyck language is replaced by a congru-
ence multiple Dyck language.

Corollary 16. Let L be a language and k ∈ N.
Then the following are equivalent:

(i) L ∈ k-MCFL

(ii) there are an alphabetic homomorphism h, a
regular languageR, and a congruence multiple
Dyck language mDc of at most dimension k
with L = h(R ∩mDc).

5The same two constructions also work to show that
k-MCFL(A) = HOM(A)

(
k-MCFL

)
.

S[1]

start

A[1]

J[1]ρ1 Jρ11Kρ11J
[1]
ρ1,1

J[1]ρ2 Jρ12Kρ12JaKaJ
[1]
ρ2,1

T
J[1]ρ4 Jρ14Kρ14K

[1]
ρ4

{
K[2]ρ1,2K

[2]
ρ1 , K[1]ρ2,1K

[1]
ρ2 , K[2]ρ2,1K

[2]
ρ2 , K[1]ρ3,1K

[1]
ρ3 , K[2]ρ3,1K

[2]
ρ3

}

A[2]

J[2]ρ4 Jρ24Kρ24K
[2]
ρ4

K[1]ρ1,2J
[2]
ρ1,1

J[2]ρ2 Jρ22Kρ22JcKcJ
[2]
ρ2,1

B[1]

J[1]ρ5 Jρ15Kρ15K
[1]
ρ5

K[1]ρ1,1J
[1]
ρ1,2

J[1]ρ3 Jρ13Kρ13JbKbJ
[1]
ρ3,1

B[2]

J[2]ρ5 Jρ25Kρ25K
[2]
ρ5

K[2]ρ1,1J
[2]
ρ1,2

J[2]ρ3 Jρ23Kρ23JdKdJ
[2]
ρ3,1

Figure 2: Automaton R obtained from G′ (cf. Exs. 4 and 17) by Lem. 15 and Cor. 16.

Proof. The construction of h in Yoshinaka et al.
(2010, Sec. 3.2) already satisfies the definition
of an alphabetic homomorphism. We may use
a congruence multiple Dyck language instead of
a multiple Dyck language since, for (i) ⇒ (ii),
k-mDYCK ⊆ k-mDYCKc and, for (ii) ⇒ (i),
k-mDYCKc ⊆ k-MCFL and k-MCFL is closed
under intersection with regular languages and un-
der homomorphisms. �

We give an example to show how Lem. 15 and
Yoshinaka et al. (2010, Sec. 3.2) can be employed
to construct a regular language for the CS represen-
tation of weighted MCFLs. The regular language
is represented by an FSA.

Example 17 (Ex. 4 continued). We construct an
MCFG G′ from G as described in the proof of (⊆)
in Lem. 15. Fig. 2 shows the FSA R obtained from
G′ by the construction in Yoshinaka et al. (2010,
Sec. 3.2). An edge labelled with a set L of words
denotes a set of transitions each reading a word in
L. Note that the language of R is not finite. 2

Lemma 18.

αHOM(A) ◦ αHOM = αHOM(A)

Proof. (⊆) Let h1 : ∆∗ → AΓ ∗ ∈ αHOM(A)
and h2 : Σ∗ → ∆∗ ∈ αHOM. By the defini-
tions of αHOM(A) and αHOM there must exist
h′1 : ∆ → AΓ∪{ε} and h′2 : Σ → ∆ ∪ {ε} such
that ĥ′1 = h1 and ĥ′2 = h2. Since h1(rng(h′2)) ⊆
AΓ∪{ε} there is some h ∈ αHOM(A) such that
h = h1 ◦ h2; hence h1 ◦ h2 ∈ αHOM(A).

(⊇) Follows from the fact that αHOM contains
the identity. �

Theorem 19. Let L be an A-weighted language
and k ∈ N. The following are equivalent:
(i) L ∈ k-MCFL(A)

(ii) there are an A-weighted alphabetic homomor-
phism h, a regular language R, and a congru-
ence multiple Dyck language mDc of dimen-
sion at most k with L = h(R ∩mDc).

Proof. For (i) ⇒ (ii): There are some L′ ∈
k-MCFL, h, h1 ∈ αHOM(A), h2 ∈ αHOM,
mDc ∈ k-mDYCKc, and R ∈ REG such that

L = h1(L
′) (by Lem. 15)

= h1(h2(R ∩mDc)) (by Cor. 16)

= h(R ∩mDc) (by Lem. 18)

For (ii)⇒ (i): We use Lems. 11 and 15, and the
closure of k-MCFG under intersection with regular
languages and application of homomorphisms. �

5 Conclusion and outlook

We defined multiple Dyck languages using con-
gruence relations (Def. 7), gave an algorithm to
decide whether a word is in a given multiple Dyck
language (Alg. 1), and established that multiple
Dyck languages with increasing maximal dimen-
sion form a hierarchy (Prop. 13).

We obtained a weighted version of the CS rep-
resentation of MCFLs for complete commutative
strong bimonoids (Thm. 19) by separating the
weights from the weighted MCFG and using Yoshi-
naka et al. (2010, Thm. 3) for the unweighted part.

Thm. 19 may be used to develop a parsing algo-
rithm for weighted multiple context-free grammars
in the spirit of Hulden (2011).

References
Noam Chomsky and Marcel-Paul Schützenberger. 1963.

The algebraic theory of context-free languages. Com-
puter Programming and Formal Systems, Studies in
Logic, pages 118–161.

Manfred Droste and Heiko Vogler. 2013. The Chomsky-
Schützenberger theorem for quantitative context-free
languages. In Marie-Pierre Béal and Olivier Carton,
editors, Developments in Language Theory, volume
7907 of Lecture Notes in Computer Science, pages
203–214. Springer.

Manfred Droste, Torsten Stüber, and Heiko Vogler.
2010. Weighted finite automata over strong bi-
monoids. Information Sciences, 180(1):156–166.

John E. Hopcroft and Jeffrey D. Ullman. 1979. Intro-
duction to automata theory, languages and computa-
tion. Addison-Wesley, 1st edition.

Mans Hulden. 2011. Parsing CFGs and PCFGs with
a Chomsky-Schützenberger representation. In Zyg-
munt Vetulani, editor, Human Language Technology.
Challenges for Computer Science and Linguistics,
volume 6562 of Lecture Notes in Computer Science,
pages 151–160.

Laura Kallmeyer. 2010. Parsing beyond context-free
grammars. Springer.

Makoto Kanazawa. 2014. Multidimensional trees and a
Chomsky-Schützenberger-Weir representation theo-
rem for simple context-free tree grammars. Journal
of Logic and Computation.

Jens Michaelis. 2001a. Derivational minimalism is
mildly context–sensitive. In Michael Moortgat, ed-
itor, Logical Aspects of Computational Linguistics,
volume 2014 of Lecture Notes in Computer Science,
pages 179–198. Springer.

Jens Michaelis. 2001b. Transforming linear context-
free rewriting systems into minimalist grammars. In
Philippe Groote, Glyn Morrill, and Christian Retoré,
editors, Logical Aspects of Computational Linguis-
tics, volume 2099 of Lecture Notes in Computer Sci-
ence, pages 228–244. Springer.

Arto Salomaa. 1973. Formal languages. Academic
Press.

Hiroyuki Seki, Takashi Matsumura, Mamoru Fujii, and
Tadao Kasami. 1991. On multiple context-free gram-
mars. Theoretical Computer Science, 88(2):191–229.

Hiroyuki Seki, Ryuichi Nakanishi, Yuichi Kaji, Sachiko
Ando, and Tadao Kasami. 1993. Parallel multiple
context-free grammars, finite-state translation sys-
tems, and polynomial-time recognizable subclasses
of lexical-functional grammars. In Proceedings of
the 31st Annual Meeting on Association for Compu-
tational Linguistics, pages 130–139.

Krishnamurti Vijay-Shanker, David Jeremy Weir, and
Aravind K Joshi. 1986. Tree adjoining and head
wrapping. In Proceedings of the 11th International
Conference on Computational Linguistics, pages 202–
207.

Krishnamurti Vijay-Shanker. 1987. A study of tree
adjoining grammars. Ph.D. thesis.

David Jeremy Weir and Arvind K. Joshi. 1988. Combi-
natory categorial grammars: Generative power and
relationship to linear context-free rewriting systems.
In Proceedings of the 26th annual meeting on Associ-
ation for Computational Linguistics, pages 278–285.

Ryo Yoshinaka, Yuichi Kaji, and Hiroyuki Seki. 2010.
Chomsky-Schützenberger-type characterization of
multiple context-free languages. In Adrian-Horia
Dediu, Henning Fernau, and Carlos Martín-Vide, edi-
tors, Proceedings of the 4th International Conference
on Language and Automata Theory and Applications,
volume 6031 of Lecture Notes in Computer Science,
pages 596–607. Springer.

http://doi.org/10.1016/S0049-237X(09)70104-1
http://doi.org/10.1007/978-3-642-38771-5_19
http://doi.org/10.1007/978-3-642-38771-5_19
http://doi.org/10.1007/978-3-642-38771-5_19
http://doi.org/10.1016/j.ins.2009.09.003
http://doi.org/10.1016/j.ins.2009.09.003
http://doi.org/10.1007/978-3-642-20095-3_14
http://doi.org/10.1007/978-3-642-20095-3_14
http://doi.org/10.1007/978-3-642-14846-0
http://doi.org/10.1007/978-3-642-14846-0
http://doi.org/10.1093/logcom/exu043
http://doi.org/10.1093/logcom/exu043
http://doi.org/10.1093/logcom/exu043
http://doi.org/10.1007/3-540-45738-0_11
http://doi.org/10.1007/3-540-45738-0_11
http://doi.org/10.1007/3-540-48199-0_14
http://doi.org/10.1007/3-540-48199-0_14
http://doi.org/10.1016/0304-3975(91)90374-B
http://doi.org/10.1016/0304-3975(91)90374-B
http://doi.org/10.3115/981574.981592
http://doi.org/10.3115/981574.981592
http://doi.org/10.3115/981574.981592
http://doi.org/10.3115/981574.981592
http://doi.org/10.3115/991365.991425
http://doi.org/10.3115/991365.991425
http://repository.upenn.edu/dissertations/AAI8804974
http://repository.upenn.edu/dissertations/AAI8804974
http://doi.org/10.3115/982023.982057
http://doi.org/10.3115/982023.982057
http://doi.org/10.3115/982023.982057
http://doi.org/10.1007/978-3-642-13089-2_50
http://doi.org/10.1007/978-3-642-13089-2_50

A Supplemental definitions

Let G be an MCFG and A a non-terminal in G.
A subderivation in G is a derivation in the un-

derlying context-free grammar of G that does not
necessarily start with an initial non-terminal.

The set of subderivations in G from A, denoted
by DG(A), is the set of subderivations in G that
start with the non-terminal A.

B Supplementals to the proof of Lem. 5

Observation 20. ĝ, obtained by position-wise ap-
plication of g, is a tree homomorphism. �

Claim 21. ĝ is a bijection.

Proof. We show that ĝ is bijective by induction on
the structure of subderivations:

Induction hypothesis: For every A ∈ N and
Ψ ∈ M(A) : ĝ is a bijection between DG′(A[Ψ])
and DG(A).

Induction step: Let Ψ ∈ M(A) and
d = ρ(d1, . . . , dk) ∈ DG(A) with d1 ∈
DG(A1), . . . , dk ∈ DG(Ak). The construction
defines Ψ1 ∈ M(A1), . . . , Ψk ∈ M(Ak) and a
production ρ′ which is unique for every ρ and
Ψ . By the induction hypothesis, we know that
there are derivations d′1, . . . , d

′
k which are unique

for (d1, Ψ1), . . . , (dk, Ψk), respectively. Therefore,
d′ = ρ(d′1, . . . , d

′
k) is unique for d and Ψ . Hence

for every Ψ : ĝ induces a bijection on DG′(A[Ψ])
and DG(A). By construction, all elements of I ′

have the form A[∅] for some A ∈ I; hence for
every element of D′G we set Ψ = ∅ and by the
induction hypothesis we obtain Cl. 21. �

Claim 22. µ′ = µ ◦ ĝ

Proof. Since ĝ is a tree homomorphism (cf.
Obs. 20), it preserves the tree structure. By the
definition of µ′ we obtain Cl. 22. �

C Supplementals to the proof of Lem. 11

Claim 23. g(L(GP)) = L.

Proof. Let Tupg(GP) be the set of tuples that are
obtained by interpreting the terms corresponding
to every subderivation in GP and then applying
g to every component. We show the following

equivalence by induction:

w ∈ mD(P)

⇐⇒ ∀` ∈ N, u0, . . . , u`, w1, . . . , w` ∈ D(Σ)

with w = u0w1u1 · · ·w`u` :
(u0, w1, u1, · · · , w`, u`) ∈ Tupg(GP)

(IH)

Note that in the following the indices in p =
{σ1, . . . , σ`} are chosen such that for every i ∈
[`] : g(p[i]) = σi. We derive

w ∈ mD(P)

⇐⇒ ∀` ∈ N, u0, . . . , u`, v1, . . . , v` ∈ D(Σ),

p = {σ1, . . . , σ`} ∈ P with

w = u0σ1v1σ1u1 · · ·σ`v`σ`u` :
u0v1u1 · · · v`u` ∈ mD(P)

(by def. of mD(P))

⇐⇒ ∀` ∈ N, u0, . . . , u`, v1, . . . , v` ∈ D(Σ),

p = {σ1, . . . , σ`} ∈ P with

w = u0σ1v1σ1u1 · · ·σ`v`σ`u` :
(u0, v1, u1, . . . , v`, u`) ∈ Tupg(GP)

(by (IH))

⇐⇒ ∀` ∈ N, u0, . . . , u`, v1, . . . , v` ∈ D(Σ),

p = {σ1, . . . , σ`} ∈ P with

w = u0σ1v1σ1u1 · · ·σ`v`σ`u` :
(u0, σ1v1σ1, u1, . . . , σ`v`σ`, u`) ∈ Tupg(GP)

(by def. of GP)

⇐⇒ ∀` ∈ N, u0, . . . , u`, w1, . . . , w` ∈ D(Σ)

with w = u0w1u1 · · ·w`u` :
(u0, w1, u0, . . . , w`, u`) ∈ Tupg(GP)

(using permuting productions in GP)

Cl. 23 follows by instantiating (IH) for ` = 0
and discovering that {t | (t) ∈ Tupg(GP)} =
g(L(GP)). �

D Supplementals to Alg. 1

Alg. 2 implements SPLIT from Alg. 1 (lines 30–33)
in an explicit manner.

For this purpose we define a data structure push-
down as a string over some alphabet and two func-
tions with side-effects on pushdowns. Let Γ be an
alphabet, γ ∈ Γ , and pd ⊆ Γ ∗ be a pushdown.
• pop(pd) returns the left-most symbol of pd and

removes it from pd .

• push(pd , γ) prepends γ to pd .

Note that pop() is only a partial function, it is
undefined for pd = ε. But since the input word
w is in D(Σ), the expression on line 8 is always
defined.

Algorithm 2 Algorithm to split a word in D(Σ)
into shortest non-empty strings from D(Σ)

Input: alphabet Σ, w ∈ D(Σ)
Output: sequence (u1, . . . , u`) of shortest words

u1, . . . , u` ∈ D(Σ) \ {ε} with w = u1 · · ·u`

1: function SPLIT’(Σ,w)
2: pd ← ε
3: j ← 1
4: uj ← ε
5: for 0 ≤ i ≤ |w| do
6: uj ← ujwi
7: if wi ∈ Σ then
8: pop(pd)
9: if pd = ε then

10: j ← j + 1
11: uj ← ε
12: end if
13: else
14: push(pd , wi)
15: end if
16: end for
17: return (u1, . . . , uj−1)
18: end function

E Supplementals to the proof of Lem. 15

Claim 24. There are bijections f : DG → DG′

and g : DG′ → L(G′).

Proof. Let f be the function that is obtained by
applying the construction position-wise to a deriva-
tion in DG. The function f only inserts symbols
into the functions in the productions; by removing
these elements, we get the original function, hence
f is bijective.

Let g : DG′ → L(G′) be the function that as-
signs for every derivation d ∈ DG′ the word
in L(G′) obtained by interpreting the term cor-
responding to d. For every w ∈ L(G′) we can
calculate the corresponding derivation (as a tree
with domain dom(t) and labelling function t) us-
ing Alg. 3, hence g is bijective. �

Claim 25. For every d ∈ DG and w ∈ ∆∗ :

(h ◦ g ◦ f)(d)(w) =

{
µ(d) if d ∈ DG(w),

0 otherwise.

Algorithm 3 Algorithm to calculate for every word
in L(G′) the corresponding derivation in DG′ (cf.
Cl. 24)

Input: w ∈ (∆′)∗

Output: t : N∗ → P

1: procedure MAIN(w ∈ (∆′)∗)
2: let t be the empty function
3: DESCEND(ε, 1)
4: return t
5: end procedure

6: procedure DESCEND(π ∈ N∗, j ∈ N)
7: ρju← w where ρ ∈ P and u ∈ (∆′)∗

8: t(π)← ρ
9: w ← u

10: A→ [u1, . . . , us](A1, . . . , Ak)← ρ
11: for every symbol δ′ in uj do
12: if δ′ ∈ ∆ then
13: remove δ′ from the beginning of w
14: else
15: xj

′

i ← δ′ for some i and j′

16: DESCEND(πi, j′)
17: end if
18: end for
19: end procedure

Proof. Follows directly from the definitions of f ,
g, and h. �

Claim 26. JGK = h(L(G′)).

Proof. For every w ∈ ∆∗ :

L(w) = JGK(w)

=
∑

d∈DG(w) µ(d)

=
∑

d∈DG(h ◦ g ◦ f)(d)(w) (by Cl. 25)

=
∑

d∈DG,u∈L(G′)
u=(g◦f)(d)

h(u)(w)

=
∑

u∈L(G′) h(u)(w) (by Cl. 24)

= h(L(G′))(w) �

	Introduction
	Preliminaries
	Weight algebras
	Weighted string homomorphisms
	Weighted multiple context-free languages

	Multiple Dyck languages
	The definition
	Membership in a congruence multiple Dyck language

	CS theorem for weighted MCFLs
	Conclusion and outlook
	Supplemental definitions
	Supplementals to the proof of lem:normalform
	Supplementals to the proof of thm:multipleDyckIsMCFL
	Supplementals to alg:IsMultipleDyck
	Supplementals to the proof of lem:weightSeparation

