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Abstract

We prove a Chomsky-Schützenberger rep-
resentation theorem for weighted multiple
context-free languages.

1 Introduction

Mildly context-sensitive languages receive much
attention in the natural language processing com-
munity (Kallmeyer, 2010). Many classes of mildly
context-sensitive languages are subsumed by the
multiple context-free languages, e.g. the languages
of head grammars, linear context-free rewriting
systems (Seki et al., 1991), combinatory catego-
rial grammars (Vijay-Shanker et al., 1986; Weir
and Joshi, 1988), linear indexed grammars (Vijay-
Shanker, 1987), minimalist grammars, (Michaelis,
2001a; Michaelis, 2001b), and finite-copying lexi-
cal functional grammars (Seki et al., 1993).

The Chomsky-Schützenberger (CS) represen-
tation for context-free languages (Chomsky and
Schützenberger, 1963, Prop. 2) has recently been
generalised to quantitative context-free languages
(Droste and Vogler, 2013) and to (unweighted)
multiple context-free languages (Yoshinaka et al.,
2010). In order to obtain a CS representation for
multiple context-free languages, Yoshinaka et al.
(2010) introduce multiple Dyck languages.

We give a more algebraic definition of multi-
ple Dyck languages using congruence relations to-
gether with a decision algorithm for membership
that is strongly related to these congruence relations
(Sec. 3). We then provide a CS representation for
weighted multiple context-free languages (Sec. 4).

2 Preliminaries

In this section we briefly recall formalisms used in
this paper and fix some notation.

We denote by N the set of natural numbers (in-
cluding zero). For every n ∈ N we abbreviate
{1, . . . , n} by [n]. Let A be a set. The power set

of A is denoted by P(A). Let B be a finite set. A
partitioning of B is a set P ⊆ P(B) where the el-
ements of P are non-empty, pairwise disjoint, and⋃

p∈P p = B.
Let S be a countable set (of sorts) and s ∈ S.

An S-sorted set is a tuple (B, sort) where B is a
set and sort is a function from B to S. We denote
the preimage of s under sort by Bs and abbreviate
(B, sort) by B; sort will always be clear from the
context. An S-ranked set is an (S∗×S)-sorted set.

Let A and B be sets. The set of functions from A
to B is denoted by BA. Let f and g be functions.
The domain and range of f are denoted by dom(f)
and rng(f), respectively. We denote the function
obtained by applying g after f by g ◦ f . Let F be
a set of functions and B ⊆

⋂
f∈F dom(f). The

set {f(B) | f ∈ F} ⊆ P(rng(f)) is denoted by
F (B). Let G and H be sets of functions. The set
{h ◦ g | h ∈ H, g ∈ G} of functions is denoted by
H ◦G.

We use the notion of nondeterministic finite au-
tomata with extended transition function (short:
FSA) from Hopcroft and Ullman (1979, Sec. 2.3).

2.1 Weight algebras

A monoid is an algebra (A, ·, 1) where · is associa-
tive and 1 is neutral with respect to ·. A bimonoid
is an algebra (A,+, ·, 0, 1) where (A,+, 0) and
(A, ·, 1) are monoids. We call a bimonoid strong
if (A,+, 0) is commutative and for every a ∈ A
we have 0 · a = 0 = a · 0. Intuitively, a strong
bimonoid is a semiring without distributivity. A
strong bimonoid is called commutative if (A, ·, 1)
is commutative. A commutative strong bimonoid
is complete if there is an infinitary sum operation∑

that maps every indexed family of elements of
A to A, extends +, and satisfies infinitary asso-
ciativity and commutativity laws; cf. Droste and
Vogler (2013, Sec. 2). For the rest of this paper
let (A,+, ·, 0, 1), abbreviated by A, be a complete
commutative strong bimonoid.
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Example 1. We provide a list of complete com-
mutative strong bimonoids (cf. Droste et al. (2010,
Ex. 1)) some of which are relevant for natural lan-
guage processing:
• Any complete commutative semiring, e.g. the

Boolean semiring B =
(
{0, 1},∨,∧, 0, 1

)
, the

probability semiring Pr =
(
R≥0,+, ·, 0, 1

)
, the

Viterbi semiring
(
[0, 1],max, ·, 0, 1

)
, the tropi-

cal semiring
(
R ∪ {∞},min,+,∞, 0

)
,

• any complete lattice,

• the tropical bimonoid(
R≥0 ∪ {∞},+,min, 0,∞

)
, and

• the algebra ([0, 1],⊕, ·, 0, 1) with ⊕ being de-
fined for every a, b ∈ [0, 1] as either a ⊕ b =
a+ b− a · b or a⊕ b = min{a+ b, 1},

where R and R≥0 denote the set of reals and the set
of non-negative reals, respectively, and +, ·, max,
min, ∧, ∨ denote the usual operations. 2

An A-weighted language (over ∆) is a func-
tion L : ∆∗ → A. The support of L, denoted
by supp(L), is {w ∈ ∆∗ | L(w) 6= 0}. If
|supp(L)| ≤ 1, we callL a monome. We write µ.w
for L if L(w) = µ and for every w′ ∈ ∆∗ \ {w}
we have L(w′) = 0.

2.2 Weighted string homomorphisms

Let ∆ and Γ be alphabets and g : ∆→ AΓ ∗ such
that g(δ) is a monome for every δ ∈ ∆. We
define ĝ : ∆∗ → AΓ ∗ where for every k ∈ N,
w1, . . . , wk ∈ ∆, and u ∈ Γ ∗ we have

ĝ(w1 · · ·wk)(u) =
∑

u1,...,uk∈Γ ∗
u=u1···uk

k∏
i=1

g
(
wi
)(
ui
)
.

We call ĝ an A-weighted (string) homomorphism.
An A-weighted homomorphism h : ∆∗ → AΓ ∗ is
alphabetic if there is a function h′ : ∆→ AΓ∪{ε}
with h = ĥ′.

Now assume thatA = B and for every δ ∈ ∆we
have |supp(g(δ))| = 1. Then g can be construed
as a function from ∆ to Γ ∗ and ĝ can be construed
as a function from ∆∗ to Γ ∗. In this case we call
ĝ a (string) homomorphism. If moreover, g is a
function from ∆ to Γ ∪ {ε}, we call ĝ alphabetic.

The sets of all A-weighted homomorphisms,
A-weighted alphabetic homomorphisms, homo-
morphisms, and alphabetic homomorphisms are
denoted by HOM(A), αHOM(A), HOM, and
αHOM, respectively.

2.3 Weighted multiple context-free languages
We fix a set X = {xji | i, j ∈ N} of variables.
Variables serve as placeholders for strings. The
set of string functions over ∆ is the N-ranked
set F∆ where for every `, s1, . . . , s`, s ∈ N we
have that (F∆)(s1···s`,s) is the set of functions
f : (∆∗)s1×· · ·×(∆∗)s` → (∆∗)s that are defined
by some equation of the form f

(
x1, . . . , x`

)
=(

u1, . . . , us
)

where xi = (x1i , . . . , x
si
i ) for every

i ∈ [`], Xf = {xji | i ∈ [`], j ∈ [si]}, and
u1, . . . , us ∈ (∆ ∪Xf )∗.

In this situation, we define the rank of f , de-
noted by rank(f), and the fan-out of f , denoted by
fan-out(f), as ` and s, respectively. The string
function f is called linear if in u1 · · ·us every
element of Xf occurs at most once, f is called
non-deleting if in u1 · · ·us every element of Xf

occurs at least once, and f is called terminal-free
if u1, . . . , us ∈ X∗f . If f is non-deleting, it is
uniquely determined by the string [u1, . . . , us]. We
may therefore write [u1, . . . , us] for f .

Note that for every s′ ∈ N∗×N, the set of linear
terminal-free string functions of sort s′ is finite.

Definition 2. A multiple context-free gram-
mar (MCFG) is a tuple (N,∆, I, P ) where
N is a finite N-sorted set (non-terminals),
I ⊆ N1 (initial non-terminals), and P ⊆fin{

(A, f,A1 · · ·A`) ∈ N × F∆ × N ` | sort(f) =
(sort(A1) · · · sort(A`), sort(A)), f is linear, ` ∈
N
}

(productions). We construe P as an N-ranked
set where for every ρ = (A, f,A1 · · ·A`) ∈ P we
have sort(ρ) = sort(f). 2

Let G = (N,∆, I, P ) be an MCFG and
w ∈ ∆∗. A production (A, f,A1 · · ·A`) ∈
P is usually written as A → f(A1, . . . , A`);
it inherits rank and fan-out from f . Also,
rank(G) = maxρ∈P rank(ρ) and fan-out(G) =
maxρ∈P fan-out(ρ). MCFGs of fan-out at most k
are called k-MCFGs. The productions of G form a
context-free grammar G′ with the elements of F∆
and ‘(’, ‘)’, and ‘,’ as terminal symbols, N as the
set of non-terminals, and I as the set of initial non-
terminals. A word in the language of G′ is a term
over F∆ and can be evaluated to a word in ∆∗. The
set of derivations of w in G, denoted by DG(w),
is the set of abstract syntax trees in G′ whose cor-
responding words are evaluated to w. The lan-
guage of G is L(G) = {w ∈ ∆∗ | DG(w) 6= ∅}.
A language L is multiple context-free if there is
an MCFG G with L = L(G). The set of multi-
ple context-free languages (for which a k-MCFG



exists) is denoted by MCFL (k-MCFL, respec-
tively).

Let k ∈ N. The class k-MCFL is a substitution-
closed full abstract family of languages (Seki et
al., 1991, Thm. 3.9). In particular, k-MCFL is
closed under intersection with regular languages
and under homomorphisms.

Definition 3. An A-weighted MCFG is a tuple
(N,∆, I, P, µ) where (N,∆, I, P ) is an MCFG
and µ : P → A (weight function). 2

Let G = (N,∆, I, P, µ) be an A-weighted
MCFG and w ∈ ∆∗. The set of derivations of w
in G is the set of derivations of w in (N,∆, I, P ).
G inherits fan-out from (N,∆, I, P );A-weighted
MCFGs of fan-out at most k are calledA-weighted
k-MCFGs. We apply µ to derivations by applying
it at every position (of the derivation) and then mul-
tiplying the resulting values (in any order, since ·
is commutative).

The A-weighted language induced by G is the
function JGK : ∆∗ → A where for every w ∈ ∆∗
we have JGK(w) =

∑
d∈DG(w) µ(d). Two (A-

weighted) MCFGs are equivalent if they induce
the same (A-weighted) language. An A-weighted
language L is multiple context-free and of fan-out
k if there is an A-weighted k-MCFG G such that
L = JGK; k-MCFL(A) denotes the set of multiple
context-free A-weighted languages of fan-out k.

Example 4. Consider the Pr-weighted MCFG
G =

(
{S,A,B}, ∆, {S}, {ρ1, . . . , ρ5}, µ

)
where

∆ = {a, b, c, d}, sort(S) = 1, sort(A) =
sort(B) = 2, and

ρ1 : S → [x11x
1
2x

2
1x

2
2](A,B) µ(ρ1) = 1

ρ2 : A→ [ax11, cx
2
1](A) µ(ρ2) = 1/2

ρ3 : B → [bx11, dx
2
1](B) µ(ρ3) = 1/3

ρ4 : A→ [ε, ε]() µ(ρ4) = 1/2

ρ5 : B → [ε, ε]() µ(ρ5) = 2/3 .

We observe that supp(JGK) = {ambncmdn |
m,n ∈ N} and for every m,n ∈ N we have
JGK(ambncmdn) = µ(ρ1) ·

(
µ(ρ2)

)m · µ(ρ4) ·(
µ(ρ3)

)m·µ(ρ5) = 1/(2m·3n+1). The only deriva-
tion of a2bc2d in G is shown in Fig. 1. 2

Non-deleting normal form An (A-weighted)
MCFG is called non-deleting if the string func-
tion in every production is linear and non-deleting.
Seki et al. (1991, Lem. 2.2) proved that for ev-
ery k-MCFG there is an equivalent non-deleting k-
MCFG. We generalise this to A-weighted MCFGs.

S → [x11x
1
2x

2
1x

2
2](A,B)

A→ [ax11, cx
2
1](A)

A→ [ax11, cx
2
1](A)

A→ [ε, ε]()

B → [bx11, dx
2
1](B)

B → [ε, ε]()

Figure 1: Only derivation of a2bc2d in G (Ex. 4).

Lemma 5. For everyA-weighted k-MCFG there is
an equivalent non-deleting A-weighted k-MCFG.

Proof. Let G = (N,∆, I, P, µ). When exam-
ining the proof of Seki et al. (1991, Lem. 2.2),
we notice that only step 2 of Procedure 1 deals
with non-deletion. We construct N ′ and P ′ from
(N,∆, I, P ) by step 2 of Procedure 1, but drop the
restriction that Ψ 6= [sort(A)].1 Let g : P ′ → P
assign to every ρ′ ∈ P ′ the production in G
it has been constructed from. Furthermore, let
I ′ = {A[∅] | A ∈ I} and µ′ = µ◦g. Since the con-
struction preserves the structure of derivations, we
have for every w ∈ ∆∗ that g gives rise to a bijec-
tion ĝ betweenDG′(w) andDG(w) with µ′ = µ◦ĝ.
Hence JGK = J(N ′, ∆, I ′, P ′, µ′)K. The fan-out is
not increased by this construction. �

3 Multiple Dyck languages

According to Kanazawa (2014, Sec. 1) there is
no definition of multiple Dyck languages using
congruence relations. We close this gap by giving
such a definition (Def. 7).

3.1 The definition
We recall the definition of multiple Dyck languages
(Yoshinaka et al., 2010, Def. 1): Let ∆ be a finite
N-sorted set,2 (·) be a bijection between ∆ and
some alphabet∆, k = maxδ∈∆ sort(δ), and r ≥ k.
The multiple Dyck grammar with respect to ∆ is
the k-MCFG G∆ =

(
{A1, . . . , Ak}, ∆̂, {A1}, P

)
where ∆̂ = {δ[i], δ̄[i] | δ ∈ ∆, i ∈ [sort(δ)]},
sort(Ai) = i for every i ∈ [k], and P is the small-
est set such that
(i) for every linear non-deleting3 terminal-free

string function f ∈ (F∆)(s1···s`,s) with ` ∈
1This construction may therefore create productions of

fan-out 0.
2In Yoshinaka et al. (2010), N-sorted sets are called in-

dexed sets and sort is denoted as dim.
3We add the restriction “non-deleting” in comparison to

the original definition since in Yoshinaka et al. (2010, Proof
of Lem. 1) only non-deleting rules are used.



[r], s1, . . . , s`, s ∈ [k] we have As →
f(As1 , . . . , As`) ∈ P ,

(ii) for every δ ∈ ∆ with sort s we have As →
[δ[1]x11δ̄

[1], . . . , δ[s]xs1δ̄
[s]](As) ∈ P , and

(iii) for every s ∈ [k] we have As →
[u1, . . . , us](As) ∈ P where ui ∈{
xi, xiδ

[1]δ̄[1], δ[1]δ̄[1]xi | δ ∈ ∆1

}
for every

i ∈ [s].
The multiple Dyck language with respect to
∆, denoted by mD(∆), is L(G∆). We call
maxδ∈∆ sort(δ) the dimension of mD(∆). The
set of multiple Dyck languages of dimension at
most k is denoted by k-mDYCK.

For the rest of this section let Σ be an alphabet.
Also let Σ be a set (disjoint from Σ) and (·) be a
bijection between Σ and Σ. Intuitively Σ and Σ
are sets of opening and closing parentheses and (·)
matches an opening to its closing parenthesis.

We define ≡Σ as the smallest congruence rela-
tion on the free monoid (Σ ∪ Σ)∗ where for ev-
ery σ ∈ Σ the cancellation rule σσ ≡Σ ε holds.
The Dyck language with respect to Σ, denoted by
D(Σ), is [ε]≡Σ . The set of Dyck languages is de-
noted by DYCK.

Example 6. Let Σ = {(, 〈, [, J}. We abbreviate (̄,
〈̄, [̄, and J̄ by ), 〉, ], and K, respectively. Then we
have for example J()K〈〉() ≡Σ JK〈〉 ≡Σ JK ≡Σ ε
and (J)K〈〉() ≡Σ (J)K() ≡Σ (J)K 6≡Σ ε. 2

Let P be a partitioning of Σ. We define ≡Σ,P
as the smallest congruence relation on the free
monoid (Σ ∪ Σ)∗ such that if v1 · · · v` ≡Σ,P ε
with v1, . . . , v` ∈ D(Σ), then the cancellation rule

u0σ1v1σ1u1 · · ·σ`v`σ`u` ≡Σ,P u0 · · ·u`
holds for every {σ1, . . . , σ`} ∈ P and u0, . . . ,
u` ∈ D(Σ). Intuitively, every element of P de-
notes a set of linked opening parentheses, i.e. paren-
theses that must be consumed simultaneously by
≡Σ,P.

Definition 7. The congruence multiple Dyck lan-
guage with respect to Σ and P, denoted by
mDc(Σ,P), is [ε]≡Σ,P . 2

Example 8. Let Σ = {(, 〈, [, J} and P = {p1, p2}
where p1 = {(, 〈} and p2 = {[, J}. We abbreviate
(̄, 〈̄, [̄, and J̄ by ), 〉, ], and K, respectively. Then
we have for example J()K[〈〉] ≡Σ,P ε since p2 =
{[, J} ∈ P, ()〈〉 ≡Σ,P ε, and u0 = u1 = u2 = ε.
But J()K〈[]〉 6≡Σ,P ε since when instantiating the
cancellation rule with any of the two elements of
P, we can not reduce J()K〈[]〉:

(i) If we choose {σ1, σ2} = {J, [} then we would
need to set u1 = 〈 and u2 =〉, but they are not
in D(Σ), also () 6≡Σ,P ε;

(ii) If we choose {σ1, σ2} = {(, 〈} then we would
need to set u0 = J and u1 =K, but they are not
in D(Σ), also [] 6≡Σ,P ε.

Hence J()K[〈〉], ()〈〉 ∈ mDc(Σ,P) and J()K〈[]〉 6∈
mDc(Σ,P). 2

Observation 9. From the definition of ≡Σ,P
it is easy to see that for every u1, . . . , uk ∈
D(Σ) and v1, . . . , v` ∈ D(Σ) we have that
u1 · · ·uk, v1 · · · v` ∈ mDc(Σ,P) implies that
every permutation of u1, . . . , uk, v1, . . . , v` is in
mDc(Σ,P). �

The dimension of mDc(Σ,P) is maxp∈P|p|.
The set of congruence multiple Dyck languages
(of at most dimension k) is denoted by mDYCKc
(k-mDYCKc, respectively).

Note that the dimension of P is 1 if and only
if P = {{σ} | σ ∈ Σ}. In this situation we
have ≡Σ = ≡Σ,P and therefore also D(Σ) =
mDc(Σ,P). Hence DYCK = 1-mDYCKc.

Proposition 10. k-mDYCK ⊆ k-mDYCKc

Idea of the proof. We show the property (∗) that
implies our claim. The “⇒” we prove by induction
on the structure of derivations in G∆. For “⇐” we
construct derivations in G∆ by induction on the
number of applications of the cancellation rule.

Proof. Let mD ∈ k-mDYCK. Then there is an
N-sorted set ∆ such that mD = mD(∆) and
k ≥ maxδ∈∆ sort(δ). We define pδ = {δ[i] | i ∈
[sort(δ)]} for every δ ∈ ∆, Σ =

⋃
δ∈∆ pδ, and

P = {pδ | δ ∈ ∆}. Clearly maxp∈P|p| ≤ k. Thus
mDc(Σ,P) ∈ k-mDYCK. Let Tup(G∆, A) de-
note the set of tuples generated inG∆ when starting
with non-terminal A where A is not necessarily ini-
tial. In the following we show that for every m ∈
[maxδ∈∆ sort(δ)] and w1, . . . , wm ∈ (Σ ∪ Σ̄)∗ :

(w1, . . . , wm) ∈ Tup(G∆, Am)

⇐⇒ w1 · · ·wm ∈ mDc(Σ,P) (∗)
∧ w1, . . . , wm ∈ D(Σ) .

We show the “⇒” by induction on the struc-
ture of derivations in G∆: From the definitions
of Tup and G∆ we have that (w1, . . . , wm) ∈
Tup(G∆, Am) implies that there are a rule Am →
f(Am1 , . . . , Am`) in G∆ and a tuple ~ui =
(u1i , . . . , u

mi
i ) ∈ Tup(G∆, Ami) for every i ∈ [`]



such that f(~u1, . . . , ~u`) = (w1, . . . , wm). By ap-
plying the induction hypothesis ` times, we also
have that u11, . . . , u

m1
1 , . . . , u1` , . . . , u

m`
` ∈ D(Σ)

and u11 · · ·u
m1
1 , . . . , u1` · · ·u

m`
` ∈ mD(Σ,P). We

distinguish three cases (each corresponding to one
type of rule in G∆):

(i) f is linear, non-deleting, and terminal-free.
Then we have for every i ∈ [m] that wi ∈
{u11, . . . , u

m1
1 , . . . , u1` , . . . , u

m`
` }

∗ and there-
fore also wi ∈ D(Σ). Furthermore, by ap-
plying Obs. 9 (` − 1) times, we have that
w1 · · ·wm ∈ mDc(Σ,P).

(ii) f = [δ[1]x11δ̄
[1], . . . , δ[m]xm1 δ̄

[m]]; then ` = 1,
m1 = m, and for every i ∈ [m] we have
wi = δ[i]ui1δ̄

[i] and since ui1 ∈ D(Σ) also
wi ∈ D(Σ). Furthermore, w1 · · ·wm =
δ[1]u11δ̄

[1] · · · δ[m]um1 δ̄
[m] ∈ mDc(Σ,P) due

to the cancellation rule.

(iii) f = [u1, . . . , um] where for every i ∈
[m] : ui ∈

{
xi, xiδ

[1]δ̄[1], δ[1]δ̄[1]xi | δ ∈
∆1

}
; then ` = 1, m1 = m, and wi ∈{

u1i , x
1
i δ

[1]δ̄[1], δ[1]δ̄[1]x1i | δ ∈ ∆1

}
. Since

≡Σ is a congruence relation, we have that
w1, . . . , wm ∈ D(Σ). By applying Obs. 9 m
times, we have that w1 · · ·wm ∈ mDc(Σ,P).

We show the “⇐” by induction on the number of
applications of the cancellation rule (including the
number of applications to reduce the word v1 · · · v`
from the definition on the cancellation rule to ε): If
the cancellation rule is applied zero times in order
to reduce w1 · · ·wm to ε then w1 = . . . = wm =
ε. The rule Am → [ε, . . . , ε]() clearly derives
(w1, . . . , wm). If the cancellation rule is applied
i+ 1 times in order to reduce w1 · · ·wm to ε then
w1 · · ·wm has the form u0σ1v1σ1u1 · · ·σ`v`σ`u`
for some u0, . . . , u` ∈ D(Σ), v1, . . . , v` ∈ D(Σ),
and {σ1, . . . , σ`} ∈ P with v1 · · · v` ≡Σ,P ε.
Then we need to apply the cancellation rule at most
i times to reduce v1 · · · v` to ε, hence, by induction
hypothesis, there is some d ∈ DG∆ that derives
(v1, . . . , v`). We use an appropriate rule ρ of type
(ii) such that ρ(d) derives (σ1v1σ1, . . . , σ`v`σ`).
Also, we need to apply the cancellation rule at
most i times in order to reduce u0 · · ·u` to ε,
hence, by induction hypothesis, there are deriva-
tions d1, . . . , dn that derive tuples containing ex-
actly u0, . . . , u` as components. Then there is a
rule ρ′ such that ρ′(ρ(d), d1, . . . , dn) ∈ DG∆ de-
rives the tuple (w1, . . . , wm).

From (∗) with m = 1 and the fact “w1 ∈

mDc(Σ,P) implies w1 ∈ D(Σ)” we get that
mDc(Σ,P) = mD . �

Lemma 11. k-mDYCKc ⊆ k-MCFL

Proof idea. For any congruence multiple Dyck lan-
guage we construct a multiple Dyck grammar that
is equivalent up to a homomorphism. We then use
the closure of k-MCFL under homomorphisms.

Proof. Let L ∈ k-mDYCKc. Then there are an
alphabet Σ and a partitioning P of Σ such that
mDc(Σ,P) = L. Consider P as an N-sorted set
where the sort of an element is its cardinality. Then
∆̂ = {p[i], p̄[i] | p ∈ P, i ∈ [|p|]}. For every
p ∈ P assume some fixed enumeration of the ele-
ments of p. We define a bijection g : ∆̂→ Σ ∪Σ
such that every p[i] (for some p and i) is assigned
the i-th element of p and g(p̄[i]) = g(p[i]). Then
g(L(GP)) = L, where GP is the multiple Dyck
grammar with respect to P. Since k-MCFLs are
closed under homomorphisms (Seki et al., 1991,
Thm. 3.9), L ∈ k-MCFL.4 �

Observation 12. Examining the definition of mul-
tiple Dyck grammars, we observe that some pro-
duction in item (ii) has fan-out k for at least one
δ ∈ ∆. Then, using Seki et al. (1991, Thm. 3.4),
we have for every k ≥ 1 that (k + 1)-mDYCKc \
k-MCFL 6= ∅. �

Proposition 13.

1-mDYCKc ( 2-mDYCKc ( . . .

Proof. We get ‘⊆’ from the definition of
k-mDYCKc and ‘6=’ from Obs. 12. �

3.2 Membership in a congruence multiple
Dyck language

We provide a recursive algorithm (Alg. 1) to decide
whether a word w is in a given congruence multi-
ple Dyck language mDc(Σ,P). This amounts to
checking whether w ≡Σ,P ε, and it suffices to only
apply the cancellation rule from left to right.

Outline of Alg. 1 We check that w is in D(Σ),
e.g. with the context-free grammar in (7.6) in Sa-
lomaa (1973). If w is not in D(Σ), it is also not in
mDc(Σ,P) and we return 0. Otherwise, we split
w into shortest strings u1, . . . , u` ∈ D(Σ) \ {ε}
such thatw = u1 · · ·u` (in line 5) with the function
SPLIT. Then every ui (for i ∈ [`]) necessarily starts

4This construction shows that Def. 7 is equivalent to Def. 1
in Yoshinaka et al. (2010) modulo the application of g.



Algorithm 1 Membership in mDc(Σ,P)

Input: Σ, P, and w ∈ (Σ ∪Σ)∗

Output: 1 if w ∈ mDc(Σ,P), 0 otherwise

1: function MAIN(Σ,P, w)
2: if w 6∈ D(Σ) then
3: return 0
4: end if
5: (u1, . . . , u`)← SPLIT(Σ,w)
6: Rel ← ∅
7: for i ∈ [`] do
8: let u′i s.t. ui = σu′iσ for some σ ∈ Σ
9: P ← {p ∈ dom(Rel) | p 3 σ}

10: if P 6= ∅ then
11: p← a minimal element of P
12: {I} ← {I ′ | (p, I ′) ∈ Rel}
13: Rel ← Rel \ {(p, I)}
14: Rel ← Rel ∪ {(p \ {σ}, I ∪ {i})}
15: else
16: {p} ← {p ∈ P | σ ∈ p}
17: Rel ← Rel ∪ {(p \ {σ}, {i})}
18: end if
19: end for
20: if

⋃
(∅,J)∈Rel J 6= [`] then

21: return 0
22: end if
23: for {j1, . . . , jk} ∈ {J | (∅, J) ∈ Rel} do
24: if MAIN(Σ,P, u′j1u

′
j2
· · ·u′jk) = 0 then

25: return 0
26: end if
27: end for
28: return 1
29: end function

30: function SPLIT(Σ,w)
31: (u1, . . . , u`)← sequence of shortest words

u1, . . . , u` ∈ D(Σ) \ {ε} with w = u1 · · ·u`
32: return (u1, . . . , u`)
33: end function

with some symbol σ ∈ Σ and ends with σ; we use
this property on line 8. Note that SPLIT is bijec-
tive (the inverse function is concatenation). We
therefore say that w and (u1, . . . , u`) correspond
to each other, and for every operation on either
of them there is a corresponding operation on the
other. In particular the empty string corresponds to
the empty tuple.

In lines 6–19 we find sets of indices {i1, . . . , ik}
such that the set of first symbols of ui1 , . . . , uik has
cardinality k and is an element of P. In order to
do this, we use a relation Rel ⊆ P(Σ) × P([`])

Table 1: Run of Alg. 1 on the word J()K[〈〉], cf.
Exs. 8 and 14.

line variable assignment

5: (u1, . . . , u`) =
(
J()K, [〈〉]

)
18: i = 1 Rel :

(
{[}, {1}

)
18: i = 2 Rel :

(
∅, {1, 2}

)
23: u′1 = (), u′2 = 〈〉

5: (u1, . . . , u`) =
(
(), 〈〉

)
18: i = 1 Rel :

(
{〈}, {1}

)
18: i = 2 Rel :

(
∅, {1, 2}

)
23: u′1 = ε, u′2 = ε

5: (u1, . . . , u`) =
()

that is initially empty (line 6). We modify Rel
while traversing the list u1, . . . , u` from left to right.
Intuitively every element (l, r) ∈ Rel stands for
an element p ∈ P where there is some previous
(with respect to the traversal of u1, . . . , u`) ui that
starts with some symbol σ ∈ p; l is the set of
elements of p we have not yet seen in some pre-
vious ui; and r is the set of indices i′ such that
some previous ui′ starts with an element of p. Rel
is constructed in lines 7–19. Since in every itera-
tion of the for-loop (lines 7–19) we add the cur-
rent i to the set on the right side of some tuple
in Rel , we have that

⋃
(p,J)∈Rel J = [`]. Now

since the left side of a tuple in Rel signifies the
elements of p we have not yet seen, a tuple of
the form (∅, {j1, . . . , jk}) ∈ Rel means that we
can reduce the outer parentheses of uj1 , . . . , ujk
with one step of the cancellation rule. In order to
reduce the whole string w, every element of [`]
has to appear in the right side of (exactly) one
tuple of the form (∅, J) ∈ Rel ; we check this
property in line 20 and return 0 (line 21) if it is
not satisfied. If it is satisfied, we remove the first
and last symbol from all uj1 , . . . , ujk (obtaining
u′j1 , . . . , u

′
jk

) where (∅, {j1, . . . , jk}) ∈ Rel and
call MAIN recursively with the string u′j1 · · ·u

′
jk

(lines 23–27); this corresponds to the condition that
v1 · · · vk ≡Σ,P ε in the definition of ≡Σ,P.

Example 14 (Ex. 8 continued). Tab. 1 shows a
run of Alg. 1 on the word J()K[〈〉] where we report
a subset of the variable assignment whenever we
reach the end of lines 5, 18, or 23. Different calls
to MAIN are separated by horizontal lines. 2



Proof of termination for Alg. 1. If w is not in
D(Σ), the algorithm terminates at line 3. If w
is the empty string, then ` = 0, therefore the in-
dex set of the for-loop on lines 7–19 is empty, the
condition on line 20 is false, the index set of the
for-loop on lines 23–27 is empty, there are no re-
cursive calls to MAIN, and the algorithm terminates
on line 28. If w is in D(Σ) and w 6= ε then there
remain two possible situations:
(i) There is some i ∈ [`] that does not occur in

the right side of any tuple in Rel . Then the
algorithm terminates on line 21.

(ii) Every i ∈ [`] occurs in the right side of some
tuple in Rel . Then the combined length of the
third arguments of all recursive calls in the for-
loop on lines 23–27 is strictly smaller then |w|
since the outermost parentheses are removed
from u1, . . . , u`. Since w has finitely many
symbols, this process can only be repeated
finitely often and the algorithm eventually ter-
minates. �

In light of the close link between Alg. 1 and the
relation ≡Σ,P we omit the proof of correctness.

4 CS theorem for weighted MCFLs

In this section we generalise the CS representation
of (unweighted) MCFLs (Yoshinaka et al., 2010,
Thm. 3) to the weighted case. We prove that an
A-weighted MCFL L can be decomposed into an
A-weighted alphabetic homomorphism h, a regu-
lar language R and a congruence multiple Dyck
language mDc such that L = h(R ∩mDc).

To show this, we use the proof idea from Droste
and Vogler (2013). The outline of our proof is as
follows:
(i) We separate the weights from L (Lem. 15), ob-

taining an MCFL L′ and a weighted alphabetic
homomorphism.

(ii) We use a corollary of the CS representation of
(unweighted) MCFLs (Cor. 16) to obtain a CS
representation of L′.

(iii) Using the two previous points and an ob-
servation for the composition of weighted
and unweighted alphabetic homomorphisms
(Lem. 18), we obtain a CS representation of L
(Thm. 19).

Lemma 15.

k-MCFL(A) = αHOM(A)
(
k-MCFL

)

Proof. (⊆) Let L ∈ k-MCFL(A). By Lem. 5
there is a non-deleting A-weighted k-MCFG G =
(N,∆, I, P, µ) such that JGK = L. We define a
non-deleting k-MCFG G′ = (N,∆′, I, P ′) where
∆′ = ∆∪{ρi | ρ ∈ P, i ∈ [fan-out(ρ)]} and P ′ is
the smallest set such that for every production ρ =
A → [u1, . . . , us](A1, . . . , Am) ∈ P there is a
productionA→ [ρ1u1, . . . , ρ

sus](A1, . . . , Am) ∈
P ′. We define an A-weighted alphabetic homo-
morphism h : (∆′)∗ → A∆∗ where h(δ) = 1.δ
for every δ ∈ ∆, h(ρ1) = µ(ρ).ε for every
ρ ∈ P , and h(ρi) = 1.ε for every ρ ∈ P and
i ∈ {2, . . . , fan-out(ρ)}. Since 1 is neutral in
multiplication, · is commutative, and G′ is non-
deleting, we have L = h(L(G′)).

(⊇) Let L ∈ k-MCFL and h : Γ ∗ → A∆∗

an A-weighted alphabetic homomorphism. By
Seki et al. (1991, Lem. 2.2) there is a non-
deleting k-MCFG G = (N,Γ, I, P ) such that
L(G) = L. We construct theA-weighted k-MCFG
G′ = (N,∆, I, P ′, µ) as follows: We extend h to
h′ : (Γ ∪ X)∗ → A(∆∪X)∗ where h′(x) = 1.x
for every x ∈ X and h′(γ) = h(γ) for every
γ ∈ Γ . We define P ′ as the smallest set such that
for every ρ = A → [u1, . . . , us](A1, . . . , Am) ∈
P(s1···sm,s) and (u′1, . . . , u

′
s) ∈ supp(h′(u1)) ×

. . . × supp(h′(us)) we have that P ′ contains the
production ρ′ = A → [u′1, . . . , u

′
s](A1, . . . , Am)

and µ(ρ′) = h′(u1)(u
′
1) · . . . · h′(us)(u′s). Since ·

is commutative and G non-deleting, we have that
JG′K = h(JGK).5 �

By setting k = 1 in the above lemma we reobtain
the equivalence of 1 and 3 in Thm. 2 of Droste and
Vogler (2013) for complete commutative strong
bimonoids.

The following is a corollary to Yoshinaka et al.
(2010, Thm. 3) where the homomorphism is re-
placed by an alphabetic homomorphism and the
multiple Dyck language is replaced by a congru-
ence multiple Dyck language.

Corollary 16. Let L be a language and k ∈ N.
Then the following are equivalent:

(i) L ∈ k-MCFL

(ii) there are an alphabetic homomorphism h, a
regular languageR, and a congruence multiple
Dyck language mDc of at most dimension k
with L = h(R ∩mDc).

5The same two constructions also work to show that
k-MCFL(A) = HOM(A)

(
k-MCFL

)
.



S[1]

start

A[1]

J[1]ρ1 Jρ11Kρ11J
[1]
ρ1,1

J[1]ρ2 Jρ12Kρ12JaKaJ
[1]
ρ2,1

T
J[1]ρ4 Jρ14Kρ14K

[1]
ρ4

{
K[2]ρ1,2K

[2]
ρ1 , K[1]ρ2,1K

[1]
ρ2 , K[2]ρ2,1K

[2]
ρ2 , K[1]ρ3,1K

[1]
ρ3 , K[2]ρ3,1K

[2]
ρ3

}

A[2]

J[2]ρ4 Jρ24Kρ24K
[2]
ρ4

K[1]ρ1,2J
[2]
ρ1,1

J[2]ρ2 Jρ22Kρ22JcKcJ
[2]
ρ2,1

B[1]

J[1]ρ5 Jρ15Kρ15K
[1]
ρ5

K[1]ρ1,1J
[1]
ρ1,2

J[1]ρ3 Jρ13Kρ13JbKbJ
[1]
ρ3,1

B[2]

J[2]ρ5 Jρ25Kρ25K
[2]
ρ5

K[2]ρ1,1J
[2]
ρ1,2

J[2]ρ3 Jρ23Kρ23JdKdJ
[2]
ρ3,1

Figure 2: Automaton R obtained from G′ (cf. Exs. 4 and 17) by Lem. 15 and Cor. 16.

Proof. The construction of h in Yoshinaka et al.
(2010, Sec. 3.2) already satisfies the definition
of an alphabetic homomorphism. We may use
a congruence multiple Dyck language instead of
a multiple Dyck language since, for (i) ⇒ (ii),
k-mDYCK ⊆ k-mDYCKc and, for (ii) ⇒ (i),
k-mDYCKc ⊆ k-MCFL and k-MCFL is closed
under intersection with regular languages and un-
der homomorphisms. �

We give an example to show how Lem. 15 and
Yoshinaka et al. (2010, Sec. 3.2) can be employed
to construct a regular language for the CS represen-
tation of weighted MCFLs. The regular language
is represented by an FSA.

Example 17 (Ex. 4 continued). We construct an
MCFG G′ from G as described in the proof of (⊆)
in Lem. 15. Fig. 2 shows the FSA R obtained from
G′ by the construction in Yoshinaka et al. (2010,
Sec. 3.2). An edge labelled with a set L of words
denotes a set of transitions each reading a word in
L. Note that the language of R is not finite. 2

Lemma 18.

αHOM(A) ◦ αHOM = αHOM(A)

Proof. (⊆) Let h1 : ∆∗ → AΓ ∗ ∈ αHOM(A)
and h2 : Σ∗ → ∆∗ ∈ αHOM. By the defini-
tions of αHOM(A) and αHOM there must exist
h′1 : ∆ → AΓ∪{ε} and h′2 : Σ → ∆ ∪ {ε} such
that ĥ′1 = h1 and ĥ′2 = h2. Since h1(rng(h′2)) ⊆
AΓ∪{ε} there is some h ∈ αHOM(A) such that
h = h1 ◦ h2; hence h1 ◦ h2 ∈ αHOM(A).

(⊇) Follows from the fact that αHOM contains
the identity. �

Theorem 19. Let L be an A-weighted language
and k ∈ N. The following are equivalent:
(i) L ∈ k-MCFL(A)

(ii) there are an A-weighted alphabetic homomor-
phism h, a regular language R, and a congru-
ence multiple Dyck language mDc of dimen-
sion at most k with L = h(R ∩mDc).

Proof. For (i) ⇒ (ii): There are some L′ ∈
k-MCFL, h, h1 ∈ αHOM(A), h2 ∈ αHOM,
mDc ∈ k-mDYCKc, and R ∈ REG such that

L = h1(L
′) (by Lem. 15)

= h1(h2(R ∩mDc)) (by Cor. 16)

= h(R ∩mDc) (by Lem. 18)

For (ii)⇒ (i): We use Lems. 11 and 15, and the
closure of k-MCFG under intersection with regular
languages and application of homomorphisms. �

5 Conclusion and outlook

We defined multiple Dyck languages using con-
gruence relations (Def. 7), gave an algorithm to
decide whether a word is in a given multiple Dyck
language (Alg. 1), and established that multiple
Dyck languages with increasing maximal dimen-
sion form a hierarchy (Prop. 13).

We obtained a weighted version of the CS rep-
resentation of MCFLs for complete commutative
strong bimonoids (Thm. 19) by separating the
weights from the weighted MCFG and using Yoshi-
naka et al. (2010, Thm. 3) for the unweighted part.

Thm. 19 may be used to develop a parsing algo-
rithm for weighted multiple context-free grammars
in the spirit of Hulden (2011).
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A Supplemental definitions

Let G be an MCFG and A a non-terminal in G.
A subderivation in G is a derivation in the un-

derlying context-free grammar of G that does not
necessarily start with an initial non-terminal.

The set of subderivations in G from A, denoted
by DG(A), is the set of subderivations in G that
start with the non-terminal A.

B Supplementals to the proof of Lem. 5

Observation 20. ĝ, obtained by position-wise ap-
plication of g, is a tree homomorphism. �

Claim 21. ĝ is a bijection.

Proof. We show that ĝ is bijective by induction on
the structure of subderivations:

Induction hypothesis: For every A ∈ N and
Ψ ∈ M(A) : ĝ is a bijection between DG′(A[Ψ ])
and DG(A).

Induction step: Let Ψ ∈ M(A) and
d = ρ(d1, . . . , dk) ∈ DG(A) with d1 ∈
DG(A1), . . . , dk ∈ DG(Ak). The construction
defines Ψ1 ∈ M(A1), . . . , Ψk ∈ M(Ak) and a
production ρ′ which is unique for every ρ and
Ψ . By the induction hypothesis, we know that
there are derivations d′1, . . . , d

′
k which are unique

for (d1, Ψ1), . . . , (dk, Ψk), respectively. Therefore,
d′ = ρ(d′1, . . . , d

′
k) is unique for d and Ψ . Hence

for every Ψ : ĝ induces a bijection on DG′(A[Ψ ])
and DG(A). By construction, all elements of I ′

have the form A[∅] for some A ∈ I; hence for
every element of D′G we set Ψ = ∅ and by the
induction hypothesis we obtain Cl. 21. �

Claim 22. µ′ = µ ◦ ĝ

Proof. Since ĝ is a tree homomorphism (cf.
Obs. 20), it preserves the tree structure. By the
definition of µ′ we obtain Cl. 22. �

C Supplementals to the proof of Lem. 11

Claim 23. g(L(GP)) = L.

Proof. Let Tupg(GP) be the set of tuples that are
obtained by interpreting the terms corresponding
to every subderivation in GP and then applying
g to every component. We show the following

equivalence by induction:

w ∈ mD(P)

⇐⇒ ∀` ∈ N, u0, . . . , u`, w1, . . . , w` ∈ D(Σ)

with w = u0w1u1 · · ·w`u` :
(u0, w1, u1, · · · , w`, u`) ∈ Tupg(GP)

(IH)

Note that in the following the indices in p =
{σ1, . . . , σ`} are chosen such that for every i ∈
[`] : g(p[i]) = σi. We derive

w ∈ mD(P)

⇐⇒ ∀` ∈ N, u0, . . . , u`, v1, . . . , v` ∈ D(Σ),

p = {σ1, . . . , σ`} ∈ P with

w = u0σ1v1σ1u1 · · ·σ`v`σ`u` :
u0v1u1 · · · v`u` ∈ mD(P)

(by def. of mD(P))

⇐⇒ ∀` ∈ N, u0, . . . , u`, v1, . . . , v` ∈ D(Σ),

p = {σ1, . . . , σ`} ∈ P with

w = u0σ1v1σ1u1 · · ·σ`v`σ`u` :
(u0, v1, u1, . . . , v`, u`) ∈ Tupg(GP)

(by (IH))

⇐⇒ ∀` ∈ N, u0, . . . , u`, v1, . . . , v` ∈ D(Σ),

p = {σ1, . . . , σ`} ∈ P with

w = u0σ1v1σ1u1 · · ·σ`v`σ`u` :
(u0, σ1v1σ1, u1, . . . , σ`v`σ`, u`) ∈ Tupg(GP)

(by def. of GP)

⇐⇒ ∀` ∈ N, u0, . . . , u`, w1, . . . , w` ∈ D(Σ)

with w = u0w1u1 · · ·w`u` :
(u0, w1, u0, . . . , w`, u`) ∈ Tupg(GP)

(using permuting productions in GP)

Cl. 23 follows by instantiating (IH) for ` = 0
and discovering that {t | (t) ∈ Tupg(GP)} =
g(L(GP)). �

D Supplementals to Alg. 1

Alg. 2 implements SPLIT from Alg. 1 (lines 30–33)
in an explicit manner.

For this purpose we define a data structure push-
down as a string over some alphabet and two func-
tions with side-effects on pushdowns. Let Γ be an
alphabet, γ ∈ Γ , and pd ⊆ Γ ∗ be a pushdown.
• pop(pd) returns the left-most symbol of pd and

removes it from pd .

• push(pd , γ) prepends γ to pd .



Note that pop() is only a partial function, it is
undefined for pd = ε. But since the input word
w is in D(Σ), the expression on line 8 is always
defined.

Algorithm 2 Algorithm to split a word in D(Σ)
into shortest non-empty strings from D(Σ)

Input: alphabet Σ, w ∈ D(Σ)
Output: sequence (u1, . . . , u`) of shortest words

u1, . . . , u` ∈ D(Σ) \ {ε} with w = u1 · · ·u`

1: function SPLIT’(Σ,w)
2: pd ← ε
3: j ← 1
4: uj ← ε
5: for 0 ≤ i ≤ |w| do
6: uj ← ujwi
7: if wi ∈ Σ then
8: pop(pd)
9: if pd = ε then

10: j ← j + 1
11: uj ← ε
12: end if
13: else
14: push(pd , wi)
15: end if
16: end for
17: return (u1, . . . , uj−1)
18: end function

E Supplementals to the proof of Lem. 15

Claim 24. There are bijections f : DG → DG′

and g : DG′ → L(G′).

Proof. Let f be the function that is obtained by
applying the construction position-wise to a deriva-
tion in DG. The function f only inserts symbols
into the functions in the productions; by removing
these elements, we get the original function, hence
f is bijective.

Let g : DG′ → L(G′) be the function that as-
signs for every derivation d ∈ DG′ the word
in L(G′) obtained by interpreting the term cor-
responding to d. For every w ∈ L(G′) we can
calculate the corresponding derivation (as a tree
with domain dom(t) and labelling function t) us-
ing Alg. 3, hence g is bijective. �

Claim 25. For every d ∈ DG and w ∈ ∆∗ :

(h ◦ g ◦ f)(d)(w) =

{
µ(d) if d ∈ DG(w),

0 otherwise.

Algorithm 3 Algorithm to calculate for every word
in L(G′) the corresponding derivation in DG′ (cf.
Cl. 24)

Input: w ∈ (∆′)∗

Output: t : N∗ → P

1: procedure MAIN(w ∈ (∆′)∗)
2: let t be the empty function
3: DESCEND(ε, 1)
4: return t
5: end procedure

6: procedure DESCEND(π ∈ N∗, j ∈ N)
7: ρju← w where ρ ∈ P and u ∈ (∆′)∗

8: t(π)← ρ
9: w ← u

10: A→ [u1, . . . , us](A1, . . . , Ak)← ρ
11: for every symbol δ′ in uj do
12: if δ′ ∈ ∆ then
13: remove δ′ from the beginning of w
14: else
15: xj

′

i ← δ′ for some i and j′

16: DESCEND(πi, j′)
17: end if
18: end for
19: end procedure

Proof. Follows directly from the definitions of f ,
g, and h. �

Claim 26. JGK = h(L(G′)).

Proof. For every w ∈ ∆∗ :

L(w) = JGK(w)

=
∑

d∈DG(w) µ(d)

=
∑

d∈DG(h ◦ g ◦ f)(d)(w) (by Cl. 25)

=
∑

d∈DG,u∈L(G′)
u=(g◦f)(d)

h(u)(w)

=
∑

u∈L(G′) h(u)(w) (by Cl. 24)

= h(L(G′))(w) �
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